ACU-Net: An Efficient Convolutional Network for Biomedical Image Segmentation

A Preprint

Tianyu Ding
Department of Biostatistics
University of Pittsburgh
Pittsburgh, PA 15260
tid16@pitt.edu

July 6, 2020

1 Data

60 MRI scans (T1 and FLAIR) from WMH 2017 Challenge are used in the experiments. We have used 5-fold cross-validation to obtain optimal hyperparameter settings such as learning rate and batch size. The cross-validation is subject level, not slice level. Then, the model is trained on the full 60 scans.

2 Data preprocessing

ROBEX [1] is used for brain extraction. Since our model is a 2D model, we expand a 3D scan on axial view. For example, if a scan is with dimension $256 \times 256 \times 60$, we processed it as 60 slices with dimension 256×256. In addition, we have applied following image processing steps sequentially: (1) cropping to remove background slices, (2) padding all slices to square image, (3) resizing all slices to 256×256 dimension and (4) intensity normalization.

After above steps, we generated dataloader in PyTorch [2] with online data augmentation i.e. the augmented image data is generated in each epoch. The data augmentation techniques we used including: cropping, rotation and flipping.

3 Method

ACU-Net (Asymmetric Compact U-Net) is based on U-Net [3]. The goal of ACU-Net is to build a compact and efficient CNN for medical image segmentation. Compared with U-Net, ACU-Net is over 40x smaller on number of parameters and 140x on FLOPs. While tested on a same machine and same dataset, ACU-Net is 5 times faster than U-Net on an training epoch where the data loading time is bottleneck for ACU-Net on GPU. In addition, ACU-Net is 10 times faster than U-Net on CPU makes ACU-Net is available for CPU machines. ACU-Net can achieve competitive performance compared with U-Net.

The architecture of ACU-Net is described in Fig [1]. It is different from U-Net in three main aspects: (1) ACU-Net is asymmetric, decoder parts with green color have fewer operations compared with their corresponding encoder parts with blue color, (2) ACU-Net is compact, it uses a light encoder and decoder design with much fewer channels compared with U-Net while still keep channel concatenation at the beginning of each decoder block and (3) ACU-Net is composed with depthwise convolutional layers. There are three techniques used in ACU-Net to build compact and efficient convolutional blocks described in Fig [2] (1) Depthwise separable convolution [4], (2) Inverted residual with linear bottleneck [5] and (3) Squeeze-and-Excitation(SE) [6].
Figure 1: ACU-Net architecture

Figure 2: ACU-Net convolutional layer blocks
ACU-Net convolutional layer block without Squeeze-and-Excitation in (a) and with Squeeze-and-Excitation in (b).

References

