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Contributions

We propose a boundary loss that takes the form of a distance metric on the space of contours (or shapes),
not regions. We argue that a boundary loss can mitigate the issues related to regional losses in highly
unbalanced segmentation problems. Rather than using unbalanced integrals over the regions, a boundary
loss uses integrals over the boundary (interface) between the regions. Furthermore, a boundary loss provides
information that is complimentary to regional losses.

Formulation

Let I : Ω ⊂ R2,3 → R denotes a training image with spatial domain Ω, and g : Ω→ {0, 1} a binary ground-
truth segmentation of the image: g(p) = 1 if pixel/voxel p belongs to the target region G ⊂ Ω (foreground
region) and 0 otherwise, i.e., p ∈ Ω \ G (background region). Let sθ : Ω → [0, 1] denotes the softmax
probability output of a deep segmentation network, and Sθ ⊂ Ω the corresponding segmentation region:
Sθ = {p ∈ Ω | sθ(p) ≥ δ} for some threshold δ.

Our purpose is to build a boundary loss Dist(∂G, ∂Sθ), which takes the form of a distance metric on
the space of contours (or region boundaries) in Ω, with ∂G denoting a representation of the boundary of
ground-truth region G (e.g., the set of points of G, which have a spatial neighbor in background Ω \G) and
∂Sθ denoting the boundary of the segmentation region defined by the network output. However, it is not
clear how to represent boundary points on ∂Sθ as a differentiable function of regional network outputs sθ.

Our boundary loss is inspired from discrete (graph-based) optimization techniques for computing gradient
flows of curve evolution [1]. Curve evolution methods require a measure for evaluating boundary changes (or
variations). Consider the following non-symmetric L2 distance on the space of shapes, which evaluates the
change between two nearby boundaries ∂S and ∂G [1]:

Dist(∂G, ∂S) =

∫
∂G

‖q∂S(p)− p‖2dp (1)

where p ∈ Ω is a point on boundary ∂G and q∂S(p) denotes the corresponding point on boundary ∂S, along
the direction normal to ∂G, i.e., q∂S(p) is the intersection of ∂S and the line that is normal to ∂G at p
(See Fig. 1.a for an illustration). Similarly to any contour distance invoking directly points on contour ∂S,
expression (1) cannot be used directly as a loss for ∂S = ∂Sθ. However, it is easy to show that the differential
boundary variation in (1) can be expressed using an integral approach [1]:

Dist(∂G, ∂S) = 2

∫
∆S

φG(p)dp (2)

where ∆S denotes the region between the two contours and φG : Ω → R is a level set representation of
boundary ∂G: φG(p) evaluates a signed distance between point p ∈ Ω and the nearest point z∂G(p) on
contour ∂G: φG(p) = −‖p − z∂G(p)‖ if p ∈ G and φG(p) = ‖p − z∂G(p)‖ otherwise. Fig. 1.b illustrates
this integral framework for evaluating the boundary distance in (1). To show that (2) holds, it suffices to
notice that integrating the distance function 2φG(p) over the normal segment connecting p and q∂S(p) yields
‖q∂S(p)− p‖2. Thus, the non-symmetric L2 distance between contours in Eq. (1) can be expressed as a sum
of regional integrals: ∫

S

φG(p)dp−
∫
G

φG(p)dp =

∫
Ω

φG(p)s(p)dp−
∫

Ω

φG(p)g(p)dp (3)
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(a) Differential (b) Integral

Figure 1: The relationship between differential and integral approaches for evaluating boundary change
(variation).

where s : Ω → {0, 1} is binary indicator function of region S: s(p) = 1 if p ∈ S belongs to the target and
0 otherwise. Now, for S = Sθ, i.e., replacing binary variables s(p) in Eq. (3) by the softmax probability
outputs of the network sθ(p), we obtain the following boundary loss which, up to a constant independent of
θ, approximates boundary distance Dist(∂G, ∂Sθ):

LB(θ) =

∫
Ω

φG(p)sθ(p)dp (4)

The level set function φG is pre-computed directly from the ground-truth region G. It can be easily com-
bined with standard regional losses and implemented with any existing deep network architecture for N-D
segmentation. In the experiments, we will use our boundary loss in conjunction with the regional generalized
Dice loss:

αLGD(θ) + (1− α)LB(θ) (5)

Architecture and training

We employed UNet [2] as deep learning architecture in our experiments. To train our model, we employed
Adam optimizer, with a learning rate of 0.001 and a batch size equal to 8. The learning rate is halved if the
validation performances do not improve during 20 epochs.

To compute the level set function φG in Eq. (4), we used standard SciPy functions 1. Note that, for slices
containing only the background region, we used a zero-distance map, assuming that the GDL is sufficient in
those cases. Furthermore, during training, the value of α in Eq. (5) was initially set to 1, and decreased by
0.01 after each epoch, following a simple scheduling strategy, until it reached the value of 0.01. In this way,
we give more importance to the regional loss term at the beginning while gradually increasing the impact of
the boundary loss term.
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1https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_

edt.html
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