
Segmentation of White Matter Hyperintensities with an Ensemble

of Multi-Dimensional Convolutional Gated Recurrent Units
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1 Method overview

Method. Our method is an ensemble of Multi-
Dimensional Convolutional Gated Recurrent
Units (MD-GRU) [1]. MD-GRUs have signifi-
cantly less parameters than commonly used U-
net methods, which can avoid overfitting on the
training dataset. Furthermore, using MD-GRU
mimics the slice by slice manual annotation pro-
cess by considering a spatial dimension as a
sequential dimension, and is very adapted for
anisotropy.

Dataset. To train our algorithms we used the
bias filed corrected (BCR) FLAIR-w MRI and
BCR T1-w registered with FLAIR of 60 subjects.
We only used images available in the challenge’s
training set.
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2 Preprocessing

For each modality, the skull is first removed with
Brain Extraction Tool [5] with the factional in-
tensity set to 0.4 and the vertical gradient set to -
0.4. The images are then split in tiles of 70 * 70 *
22 or 72 * 72 * 24 voxels (depending on the depth
of the network) both at train and at test time,
with a 50% overlap, to fit in the GPU memory
and give a more robust (averaged) prediction.
Finally, to be robust to outliers a 1%-99% per-
centile normalization is applied. Intensity values
between 1% and 99% are consequently rescaled
between 0 and 1.

3 Recurrent Neural Network

Model. A MD-GRU network takes a multi-
channels array of tiles as an input (FLAIR or
FLAIR and T1) ; and outputs a single chan-
nel array of tile. The architecture is composed
of MD-GRU layers linked with channelwise fully
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Table 1: Model architectures of the ensemble

MD-GRU 1 MD-GRU 2 MD-GRU 3

1
y, z

both ways
y, z

both ways
y, z

both ways

2
x, y, z

both ways
x, y, z

both ways
x, y, z

forward

3
x, y, z

both ways
x, y, z

both ways
x, y, z

forward

4
x, y, z

both ways
x, y, z

both ways
/

5
x, y, z

both ways
x, y, z

both ways
/

connected layers, as in [1]. Our MD-GRU ap-
plies a non padded Convolutional Gated Recur-
rent Unit [1], with a 2D convolution followed
by batch-normalization in several spatial dimen-
sions before summing the outputs. The parame-
ters are optimized with Adadelta [4] with Keras’
default learning rate (1.0) and the activation
function of the last layer is a sigmoid.

Training. Five models were trained with a
Dice loss on randomly selected train and valida-
tion splits with different architectures referenced
in table 1. The first three models use FLAIR
and T1 as input ; the last two use only FLAIR.
During training, on-the-fly random translations,
rotations and flipping were used. Training one
model lasts 1 day on a single GPU.

4 Post-processing

Reconstruction. A reconstruction algorithm
transforms the tiled output of a network into a
full size output. Overlapping predictions are av-
eraged.

Ensemble of 5 models. After reconstruction,
the probabilistic outputs of the five models are
averaged. A 0.5 threshold is applied.
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