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The method used is slightly adapted from the framework
described in [2]. It consists in two steps: model selection
and post-processing.

I. PRE-PROCESSING

As part of the preprocessing, the FLAIR image is reg-
istered to the T1 image. A label fusion technique, known
as GIF (Geodesic Information Flows) [1], is used for three
purposes:

a skull-stripping of the image
b patient-specific priors obtained as the average of the

registered segmentations
c brain parcellation.

In order to model the bias field as additive, multivariate
image intensities yn with n representing an individual voxel
are log-transformed and normalised using the skull-stripped
mask.

II. MODEL SELECTION

A. Gaussian mixture model

The three-level hierarchy of the Gaussian mixture model
can be described as follows
Level 1 At the first level (Level 1), indexed by l, the model

is robustly divided into two density functions I and
O, that correspond respectively to the inlier part (I),
modelling the healthy tissues, and to the outlier part
(O), related to the unexpected observations, such that

f (yn|ΞK) = bnI · I (yn|ΞK)+bnO ·O(yn|ΞK) ,

with bnI + bnO = 1 and bnl ≥ 0, and introducing b the
vector formed with these parameters. Initially, flat priors
are used to differentiate inliers and outliers.

Level 2 The second level (Level 2), indexed by j charac-
terizes the anatomical tissue classes (i.e. if an inlier or
outlier voxel belongs to WM, GM, CSF or other non-
brain (NB) tissues). The number of anatomical classes
Jl is considered the same for both the inlier and outlier
classes since the model is built under an assumption of
symmetry, simplifying JI = JO = J. The distribution is
thus:

f (yn|ΞK) = ∑
l∈I,O

bnl
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where bnl , anl j and Φ

(
yn

∣∣∣Θl j

)
are respectively the local

mixing probabilities of l, the local a priori probability
for l j and the likelihood of the data at voxel n for the
tissue class l j. The local a priori probabilities for tissue
classes j are obtained from the statistical atlases such
that anl j satisfies ∑

J
j=1 anl j = 1 and anl j ≥ 0, ∀l ∈ {I,O}.

Level 3 The third level (Level 3), indexed by k, character-
izes the multiple intensity clusters of each inlier or out-
lier tissue class and models the acquisition noise in the
observations from the expected biological mean signal.
Each anatomical class density distribution is modelled

by a mixture of multiple components with distribution
M , that can be Gaussian (G ) and/or uniform (U ) such
that
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where Kl j is the number of Gaussian components in
class l j, wl jk

is the mixing proportion (≥ 0) of class l jk
and θl jk

are the corresponding Gaussian parameters.
The uniform distribution in each class l j is only
parameterised by the mixing coefficient wl jKl j

+1 . The
mixing coefficients for class l j are gathered in the
vector wl j , with W being the set of all such vectors that

satisfy ∑
Kl j+1

k=1 wl jk
= 1, ∀l ∈ {I,O} and ∀ j ∈ {1, · · · ,J}.

Adopting the notation ωnl jk
= bnlanl j wl jk

with π= {b,a,W}
the set of a priori mixing weights at the different hierarchical
levels and considering the observations as independent and
identically distributed (iid), the multi-layered mixture model
can finally be expressed as follows:
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B. Model evolution

The number of Gaussian components needed is obtained
using a split and merge strategy. Possible model modifying
operations (split of a component at the third level or merge
of two component) are ordered based on their likelihood
to provide a successful improvement after convergence.
Each operation is tested by initialising the change and
optimising an expectation-maximisation (EM) algorithm on
the new model. Priors over the covariance of the Gaussian
components are modelled according to an Inverse Wishart
distribution. After convergence, the Bayesian Inference cri-
terion is used to check if the newly optimised model should
be accepted. This step is used to enforce a balance between
model fit and model complexity. The final model is obtained
once no further modifying operation successfully satisfies
this criterion.

C. Initialisation / Outlier atlas

Considering a mixture with eight classes separated in in-
liers (I) and outliers (O), an initial expectation-maximisation
algorithm is run performing bias field correction and provid-
ing initial separation between inliers and outliers. Atlases of
outlierness are obtained as smoothed version of the typicality



2

map defined by Van Leemput et al. [3]. The typicality value
for a given voxel n follows the expression:
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j=1
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2
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)
where pn j = pnI j + pnO j and κ = 3.

III. POST-PROCESSING

A. Candidate voxels selection
After convergence of the model selection process, a three-

level Gaussian mixture model is obtained. The classes cor-
responding to the inlier of the WM are gathered in order to
produce a distribution for intensity reference with parameters
µIWM , ΛIWM . For the voxels classified as outliers, intensity
comparisons are performed with respect to this reference
class and a probability map of candidate lesion is obtained
as such that

Ln =

 pnO ·max
(

1,
dMahal(yFLAIR

n )
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)
if yFLAIR

n > µFLAIR
IWM

0 otherwise

where Ln represents the lesion probability, pnO the probabil-
ity to be classified as outlier and dMahal is the Mahalanobis
distance to the inlier white matter reference distribution.

B. False positive correction
After thresholding the candidate probability map at 0.5,

connected components are extracted and their location with
respect to the ventricles, the choroid plexus, septum pellu-
cidum and cortical sheet is assessed using the brain parcella-
tion obtained from GIF. This information is used to separate
true lesion elements from spurious false positives resulting
in the final segmentation.

IV. RESULTS ON TRAINING SET

Evaluation of the automated segmentation results was
obtained for the training set using the open source package
NiftyNet (http://www.niftynet.io) and Table I summarises the
results obtained for Dice score coefficient (DSC), sensitivity
(Sens), average pairwise distance (AveDist) and positive
predictive value (PPV) for the three scanner types. Linear
relationships between reference and segmented volumesare
plotted in Figure 1. The values of R2 varied between 0.95
and 0.98.

Lastly Figure 2 present a segmentation example compared
to the gold standard in one case per scanner type.

GE Singapore Utrecht Overall

DSC 56.4 [52.0 ; 72.1] 75.3 [59.3 ; 77.2] 72.6 [45.4 ; 80.1] 69.0 [51.2 ; 76.9]
Sens 68.5 [56.9 ; 76.3] 64.4 [59.3 ; 69.7] 81.7 [69.0 ; 88.5] 68.9 [58.4 ; 78.8]

AveDist 1.42 [0.57 ; 2.58] 0.68 [0.47 ; 2.02] 0.67 [0.35 ; 2.67] 0.83 [0.47 ; 2.66]
PPV 56.1 [46.2 ; 66.7] 85.4 [57.9 ; 90.7] 64.6 [37.8 ; 76] 64.8 [47.0 ; 82.4]

TABLE I: Evaluation of segmentation results for each scan-
ner type presented under the form median [1st Quartile ; 3rd
Quartile]

Fig. 1: Plots of the relationship between segmented and
reference volumes for the different scanner types

FLAIR GS BaMoS

Fig. 2: Example of segmentation results (3rd column) com-
pared to gold standard segmentations (2nd column)
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