
1 

 

WMH segmentation challenge at MICCAI 2017: Brief description of the method 

 

Team name: SKKU MedNeuro 

Team members:  Bo-yong Park, BS1,2*, Mi Ji Lee, MD3 and Hyunjin Park, PhD2,4 

1 Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, 

Suwon, Korea 

2 Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 

Korea 

3 Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of 

Medicine, Seoul, Korea 

4 School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea 

 

* Contact person 

Bo-yong Park, BS/PhD Candidate 

Center for Neuroscience Imaging Research 

Department of Electronic, Electrical and Computer Engineering  

Sungkyunkwan University, Suwon, Korea, ZIP 16419 

Phone: +82-31-299-4107 

Fax: +82-31-290-5819 

Email: by6860@skku.edu / by9433@gmail.com  

  



2 

 

The given data were 2D multi-slice FLAIR image and 3D T1-weighted image that were 

registered onto the FLAIR space and all imaging data were corrected for magnetic field bias. The 

white matter hyperintensity (WMH) regions were segmented as follows using FSL, AFNI, and 

MATLAB. 

1. Preprocessing step 

The skull of the T1-weighted and FLAIR images were stripped by spatially warping and 

applying the Montreal Neurological Institute (MNI) brain mask onto the T1-weighted data. The 

skull stripped T1-weighted data was segmented into gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF).  WM mask was refined to reduce misclassified voxel due to intensity 

similarity between WMH and GM using following procedures. The partial volume effect (PVE) 

of CSF mask was removed from the FLAIR data. In addition, the CSF PVE mask was 

skeletonized and dilated, and then removed from the FLAIR data. Ventricle mask was extracted 

using region growing method in each slice and then we subtracted the eroded ventricle mask 

from the dilated ventricle mask for the final ventricle mask. This step was performed to detect 

periventricular WMHs that were located near the ventricle. The refined WM mask of the FLAIR 

data was eroded and intensity normalization was performed with mean value of 1,000.  

2. Detection step 

The potential periventricular and deep WMHs were detected separately. The periventricular 

WMH voxels were detected by thresholding the WM of the FLAIR data with 1.4 times of the 

mean intensity of FLAIR. The detected voxels were clustered and region growing was performed 

using seeds that were from potential WMH clusters with size larger than 100 voxels. Region 

growing terminated when the boundary met a voxel with intensity value lower than 1.3 times of 

the mean FLAIR intensity. Maximum of 3 mm in Euclidean distance was allowed for the region 

growing step. The deep WMH voxels were detected by thresholding the WM of the FLAIR data 

with 1.3 times of the mean FLAIR intensity and the region growing was performed using seeds 

of every voxel except the detected periventricular WMHs. If the size of the region grown cluster 

exceeds 1,000 voxels, then it was considered as periventricular WMH and removed. 

3. Classification step 

We constructed random forest model to classify true and false WMHs to account for possible 
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false positive of the previous step. The classification step was performed on the periventricular 

and deep WMHs separately. A total of 238 features (19 texture and 100 multi-layer features per 

imaging modality, and the volume of the potential WMH clusters) were extracted from the 

dilated potential WMH clusters in intensity normalized FLAIR and T1 data. The texture features 

were calculated using voxel intensities and they were max, min, media, mean, variance, energy, 

standard deviation, root mean square, range, interquartile range, entropy, uniformity, and 

percentile of 2.5, 25, 50, 75, and 97.5. The multi-layer features were extracted by constructing an 

architecture similar to the convolutional neural network. It was composed of two convolutional 

layers, two max pooling layers, and one fully connected layer. Patches of two different sizes (15 

 15 and 7  7) were used. In the first convolutional layer, 25 2D filters of average, disk, 

Gaussian, log of Gaussian, Laplacian, prewitt, sobel, and motion filters with different hyper-

parameters were applied and in the next max pooling layer, the patches were down-sampled with 

kernel size of two. In the second convolutional layer, 10 3D filters of average, ellipsoid, 

Gaussian, log of Gaussian with different hyper-parameters were used and then subsequently max 

pooling was applied with size of two. Finally, 3   3  10 and 1  1  10 imaging patches were 

obtained and they were vectorized in the fully connected layer. The potential WMH clusters 

(periventricular and deep separately) were divided into training and test sets with ratio of 8:2. 

The random forest model was constructed using the training set and validated using the test set. 

We performed the training and test steps using randomly selected training sets until we achieve 

the test accuracy over 95% for periventricular WMHs and 90% for deep WMHs. The classified 

periventricular and deep WMH clusters were merged into the one single image and it was 

considered as our final result. 


