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Foreword: A longer description than the following one is given in the recent paper [4)].

We applied a fully convolutional network and transfer learning to segment the white matter inten-
sities. The method is fully automatic, and uses both T1 and FLAIR sequences. An overview of the
proposed method is given in Fig.[I] The details of the whole pipeline is given hereafter.
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Figure 1: Architecture of the proposed network. We fine tune it and combine linearly fine to coarse
feature maps of the pre-trained VGG network [3]. Note that each color image (Input) is built from
the slice n of the T1 and FLAIR sequences.

Pre-processing. Our segmentation method uses both T1 and FLAIR sequences of brain. We
perform a requantization of voxel values on 8bit. The FLAIR slices are filtered using a morphological
operator (an area opening), so that small lesions are filtered out, and we compute the residue (difference
between the original FLAIR image and the filtered one); in this final image, small lesions are particulary
visible and large ones do not appear.

Deep FCN for white matter intensities segmentation. Efficient natural image segmentation
can be achieved thanks to deep fully convolutional network (FCN) and transfer learning [1]. In this
paper, we propose to rely on this same method to segment 3D brain MR images, although those
images are very different from natural images. We rely on the 16 layers VGG network [3]| pre-trained
on millions of natural images in ImageNet for image classification. For our application, we discard
the fully connected layers at the end of VGG network, and keep the 5 stages of convolutional parts
called “base network”. This base network is mainly composed of convolutional layers: z; = w; X x + b;,
Rectified Linear Unit (ReLU) layers for non linear activation function: f(z;) = max(0,2;), and max
pooling layers between two successive stages, where x is the input of each convolutional layer, w;
is the convolution parameter, and b; is the bias term. The four max pooling layers divide the base
network into five stages of fine to coarse feature maps. Inspired by the work in [12], we add specialized
convolutional layers (with a 3 x 3 kernel size) with K (e.g. K = 16) feature maps after the convolutional



layers at the end of each stage. We resize all the specialized layers to the original image size, and
concatenate them together. A last convolutional layer with kernel size 1 x 1 is appended at the end that
combines linearly the fine to coarse feature maps in the concatenated specialized layers, to produce
the final segmentation result. The proposed network architecture is depicted in Fig.

The architecture described above is very similar with the one used in [2] for retinal image analysis,
where the retinal images are already 2D color images. For our application, the question amounts to
how to prepare appropriate inputs given that a brain MR image is a 3D volume. To get RGB input
images, we propose to stack successive 2D slices. Precisely, to form an input artificial color image for
the pre-trained network to segment the n'! slice, we use the slice n of FLAIR and T1 and a filtered
FLAIR as respectively the green, blue and red channels. This process is depicted in Fig. [1| (left). Each
2D color image thus forms a representation of a part (a slice of FLAIR and T1) of the MR volume.
Using such a 2D representation avoids the expensive computational and memory requirements of fully
3D FCN.

For the training phase, we use the multinomial logistic loss function for a one-of-many classification
task, passing real-valued predictions through a softmax to get a probability distribution over classes.
During training, we use the classical data augmentation strategy by scaling and rotating, and also
subtract 127 (to center values at 0) for each channel in the training images. We fine tune the network
for the first 50k iterations using a learning rate of ir = 107%, and the last 100k with a smaller
learning rate (Ir = 107?). We rely on stochastic gradient descent with momentum to minimize the
loss function with momentum = 0.99 for the first 50k iterations and 0.999 for the next 100k, and
weight_decay = 0.0005. The loss function is averaged over 20 images.

At test time, after having pre-processed the 3D volume (re-quantization), we prepare the set of
2D color images. Then we subtract 127 for each channel, and pass every image through the network.
Post-processing. After inference, the 3D volume is reconstructed from the 2D slices.

We run the test phase on a GPU card: NVIDIA GeForce GTX 1080 Ti, having 11Go.
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