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Multi-dimensional Gated Recurrent Units Multi-dimensional Gated Re-
current Units (MD-GRU) [2] are a multi-dimensional generalization of gated
recurrent units [3]. Simply put, MD-GRU handle multi-dimensional data similar
to bi-directional recurrent neural networks (biRNN) for one-dimensional data.
A biRNN travels along the time dimension in forward and backward direction
through the signal and summarizes its state to gather an output at the respective
timesteps of both directions. In MD-GRU, all spatial dimensions are considered
as time dimensions. For each dimension, the data are processed in forward and
backward fashion along that dimension, and the sum of the resulting intermedi-
ate outputs constitutes the final output of the MD-GRU.

Network We model and train our network of MD-GRU as published in [2], if
not stated otherwise. To summarize the architecture, we use three consecutive
MD-GRU layers of 16, 32, and 64 channels, which are connected with voxel-
wise fully connected layers of 25 and 45 channels, both followed by a hyperbolic
tangent activation function. Finally, a voxel-wise fully connected layer of three
channels is appended and fed into a softmax activation function, resulting in
three probabilities for each voxel, one for each class (background, WMH, other
pathology).

Data and Preprocessing We use both the preprocessed FLAIR and T1 scans
and create two additional high-pass filtered versions. We accomplish this by first
filtering each scan with a 3d Gauss filter of 0, , = 5 and o, = 1.6 voxels, where
x and y refer to in-plane dimensions, and subtract the results from the originals.
Each of the 4 volumes is then normalized to zero mean and unit variance. No
further preprocessing is applied.

Optimization The network is trained using Tensorflow 1.1 [1] on a machine
equipped with an NVIDIA GeForce Titan X. We apply Gaussian Dropout [4]
of 0.5 on both state and input filters of the MD-GRU layers. We selectively
sample such that each second training sample is guaranteed to contain the WMH
class. Throughout training, we sample randomly deformed subvolumes using a
smooth deformation field. We acquire this deformation field by sampling random



deformation vectors on a low resolution grid with a spacing of 75, 75, and 15
voxels. We then scale this grid using bicubic interpolation to full resolution
and use the resulting deformation vectors to deform our samples. Starting from
training iteration 40 000, we additionally apply random rotation and scaling to
the volumes, uniformly drawn from [—10°,410°] and [0.8, 1.2] respectively. We
decided to stop training at iteration 112 500, indicated by a small validation set
of three volumes (numbers 29, 58, and 110) which we excluded from training .

Evaluation Due to memory constraints, we need to divide the volume of size
Sy xSy xS, into chunks of size s, x 5, X s,. We let patches overlap along dimension
i by p; = % and use linear blending to combine them. For each dimension, we
additionally pad the full volume by p;. We automatically determine the best
patch size with respect to available memory for each sample, given that volumes
of roughly 2-10° voxels fit into memory: If S, +2-8 < 100, we set s, = S, +2-8
and p, = 8. Otherwise, we set s, = 100 and p, = 50. The remaining two sizes are
2.106
Sz

approximated using s; = . For each dimension ¢ that needs blending, we

use the smallest s; that still produces the same number of patches per dimension.
From the 3 predicted classes, we ignore the third class, since its also ignored in
the evaluation and determine the label from the maximum probability of either
background or WMH class.
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