tig - WMH Segmentation Challenge
Skip to content

WMH Segmentation Challenge

Grand Challenge

  • Home
  • Details
  • Data
    • Manual reference standard
    • MRI parameters
  • Methods
    • Submit
    • Dockerfile
    • Example: python
    • Example: matlab
  • Results
    • Evaluation
    • Teams:
    • achilles
    • acunet
    • arg
    • bigrbrain
    • bigrbrain 2
    • bioengineering_espol_team
    • buckeye_ai
    • caai_amh
    • cian
    • coroflo
    • dice
    • fmrib-truenet
    • fmrib-truenet 2
    • hadi
    • himinn
    • ipmi-bern
    • k2
    • knight
    • livia
    • lrde
    • misp
    • misp 2
    • neuro.ml
    • neuro.ml 2
    • nic-vicorob
    • nih_cidi
    • nih_cidi 2
    • nist
    • nlp_logix
    • pitt-vamp
    • pitt-vamp 2
    • pgs
    • rasha_simple
    • rasha_improved
    • scan
    • skkumedneuro
    • sysu_media
    • sysu_media 2
    • text_class
    • tig
    • tig 2
    • tignet
    • tum_ibbm
    • uned
    • uned 2
    • uned_contrast
    • upc_dlmi
    • wta
    • wta 2
  • Organizers
  • —
  • Login
  • Register

tig

A three-level Gaussian mixture model, slightly adapted from Sudre et al. The model is iteratively modified and evaluated, until it converges. After that, candidate WMH is selected and possible false positives are pruned based on their location.

Presentation of this method.
Full description of this method.

An updated submission is available: tig 2.

by Hugo J. Kuijf, Image Sciences Institute, UMC Utrecht, the Netherlands

Privacy Policy