nlp_logix - WMH Segmentation Challenge
Skip to content

WMH Segmentation Challenge

Grand Challenge

  • Home
  • Details
  • Data
    • Manual reference standard
    • MRI parameters
  • Methods
    • Submit
    • Dockerfile
    • Example: python
    • Example: matlab
  • Results
    • Evaluation
    • Teams:
    • achilles
    • acunet
    • arg
    • bigrbrain
    • bigrbrain 2
    • bioengineering_espol_team
    • buckeye_ai
    • caai_amh
    • cian
    • coroflo
    • dice
    • fmrib-truenet
    • fmrib-truenet 2
    • hadi
    • himinn
    • ipmi-bern
    • k2
    • knight
    • livia
    • lrde
    • misp
    • misp 2
    • neuro.ml
    • neuro.ml 2
    • nic-vicorob
    • nih_cidi
    • nih_cidi 2
    • nist
    • nlp_logix
    • pitt-vamp
    • pitt-vamp 2
    • pgs
    • rasha_simple
    • rasha_improved
    • scan
    • skkumedneuro
    • sysu_media
    • sysu_media 2
    • text_class
    • tig
    • tig 2
    • tignet
    • tum_ibbm
    • uned
    • uned 2
    • uned_contrast
    • upc_dlmi
    • wta
    • wta 2
  • Organizers
  • —
  • Login
  • Register

nlp_logix

A multiscale deep neural network similar to Ghafoorian et al., with some minor modifications and no spatial features. The network was trained in ten folds and the three best performing checkpoints on the training data were selected. These were applied on the test set and the results averaged.

Presentation of this method.
Full description of this method.
Docker container of this method.

by Hugo J. Kuijf, Image Sciences Institute, UMC Utrecht, the Netherlands

Privacy Policy