k2 - WMH Segmentation Challenge
Skip to content

WMH Segmentation Challenge

Grand Challenge

  • Home
  • Details
  • Data
    • Manual reference standard
    • MRI parameters
  • Methods
    • Submit
    • Dockerfile
    • Example: python
    • Example: matlab
  • Results
    • Evaluation
    • Teams:
    • achilles
    • acunet
    • arg
    • bigrbrain
    • bigrbrain 2
    • bioengineering_espol_team
    • buckeye_ai
    • caai_amh
    • cian
    • coroflo
    • dice
    • fmrib-truenet
    • fmrib-truenet 2
    • hadi
    • himinn
    • ipmi-bern
    • k2
    • knight
    • livia
    • lrde
    • misp
    • misp 2
    • neuro.ml
    • neuro.ml 2
    • nic-vicorob
    • nih_cidi
    • nih_cidi 2
    • nist
    • nlp_logix
    • pitt-vamp
    • pitt-vamp 2
    • pgs
    • rasha_simple
    • rasha_improved
    • scan
    • skkumedneuro
    • sysu_media
    • sysu_media 2
    • text_class
    • tig
    • tig 2
    • tignet
    • tum_ibbm
    • uned
    • uned 2
    • uned_contrast
    • upc_dlmi
    • wta
    • wta 2
  • Organizers
  • —
  • Login
  • Register

k2

A 2D fully convolutional neural network with an architecture similar to U-Net. A number of models were trained for the whole dataset, as well as for each individual scanner. During application, first the type of scanner was predicted and next that specific model was applied together with the model trained on all data.

Presentation of this method.
Full description of this method.
Docker container of this method.

by Hugo J. Kuijf, Image Sciences Institute, UMC Utrecht, the Netherlands

Privacy Policy