hadi - WMH Segmentation Challenge
Skip to content

WMH Segmentation Challenge

Grand Challenge

  • Home
  • Details
  • Data
    • Manual reference standard
    • MRI parameters
  • Methods
    • Submit
    • Dockerfile
    • Example: python
    • Example: matlab
  • Results
    • Evaluation
    • Teams:
    • achilles
    • acunet
    • arg
    • bigrbrain
    • bigrbrain 2
    • bioengineering_espol_team
    • buckeye_ai
    • caai_amh
    • cian
    • coroflo
    • dice
    • fmrib-truenet
    • fmrib-truenet 2
    • hadi
    • himinn
    • ipmi-bern
    • k2
    • knight
    • livia
    • lrde
    • misp
    • misp 2
    • neuro.ml
    • neuro.ml 2
    • nic-vicorob
    • nih_cidi
    • nih_cidi 2
    • nist
    • nlp_logix
    • pitt-vamp
    • pitt-vamp 2
    • pgs
    • rasha_simple
    • rasha_improved
    • scan
    • skkumedneuro
    • sysu_media
    • sysu_media 2
    • text_class
    • tig
    • tig 2
    • tignet
    • tum_ibbm
    • uned
    • uned 2
    • uned_contrast
    • upc_dlmi
    • wta
    • wta 2
  • Organizers
  • —
  • Login
  • Register

hadi

A random forest classifier trained on multi-modal image features. These include intensities, gradient, and Hessian features of the original images, after smoothing, and of generated super-voxels.

Presentation of this method.
Full description of this method.
Docker container of this method.

by Hugo J. Kuijf, Image Sciences Institute, UMC Utrecht, the Netherlands

Privacy Policy